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Non-Markovian autoresonant dynamics of tunneling from discrete to continuum modes
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We study the autoresonant dynamics of a discrete level coupled to a continuum, and show that passing
adiabatically through a linear resonance, above a well-defined threshold, yields a transition to nonlinear phase
locking and linear non-Markovian decay to the continuum. This process results in broadening of the population of
the continuum modes beyond its natural linewidth. This concept can be employed to alter spontaneous emission,
where driving an atom into phase locking with continuum modes will yield the emission of short pulses.
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I. INTRODUCTION

Efficiently driving a nonlinear oscillator by an external
oscillating force is not a trivial task. At low amplitudes, the
oscillator can be captured into resonance with external oscilla-
tions. But, as the amplitude of nonlinear oscillations increases,
the resonance frequency varies, and the nonlinear oscillator
becomes detuned from the source, leading to asynchrony in
their phases. Without phase synchronization, the power trans-
fer process is inefficient: the power flows periodically from
the source to the oscillator and back. An efficient technique
for overcoming these difficulties exploits autoresonance: a
nonlinear phenomenon in which a driven oscillator is captured
into a continuous resonance with an external oscillator, despite
dynamic variations in the system parameters. The phenomenon
works as follows. A driver, coupled to a nonlinear oscillator,
oscillates with a chirped, slowly varying, time-dependent
frequency. When the frequency passes the resonant frequency
of the driven oscillator, their phases lock, and remain locked
continuously. The phase locking is maintained by a continuous
increase in the amplitude of the driven oscillator, resulting in
efficient amplification. Since the main requirement for such
dynamics is just the presence of a nonlinearity, autoresonance
is a very general phenomenon relevant to many physical areas,
ranging from plasma [1] and fluid dynamics [2] to atom physics
[3], Bose-Einstein condensates (BECs) [4], superconducting
Josephson junctions [5,6], optical waves [7,8], and even
planetary dynamics [9].

Traditionally, autoresonance has been studied in systems
that couple a driver to single a driven system, although some
works also studied the coupling between a driver and a discrete
set of driven systems, such as the excitation of multiphase
waves [10] or the simultaneous amplification of incoherently
coupled optical waves [11]. Interestingly, autoresonance cou-
pling between an oscillator and a continuous set of oscillators
(a continuum) has never been studied. In a broad perspective,
coupling between an oscillator and a continuum of modes
describes a variety of fundamental phenomena, such as
spontaneous emission from excited atoms, radioactive decay
(tunneling), resonance states (leaky modes), etc. All of these
phenomena are described by a discrete level coupled to a
broadband continuum (a continuous set of modes). The general
outcome of such processes is Markovian dynamics, in which
the discrete level decays exponentially into the continuum.
Even if the discrete level is nonlinear and chirped, as long as the

continuum is wide enough and has no singularities, memory
effects will be negligible, and the decay will be exponential,
that is, a Markovian process. However, when the continuum is
not broadband anymore, or if it has singularities, the dynamics
can become non-Markovian, where memory effects play major
role in the evolution of the system, and the decay deviates from
being exponential, and can even be inhibited altogether. For
example, an atom spontaneously emitting a photon near a band
edge of a photonic crystal decays in a nonexponential fashion,
due to the singularity in the density of states near the band
edge [12]. Another method for non-Markovian dynamics of a
quantum system coupled to a reservoir relies on frequent mea-
surements or modulation of the coupling constant, which also
yields nonexponential decay [13] and controlled decoherence
even in the presence of Kerr nonlinearity [14]. These effects,
known as the quantum Zeno and anti-Zeno effects, can lead to
acceleration or deceleration of decay process of the level into
the continuum. These findings raise the following interesting
question. Consider a discrete level, coupled to a continuum
with a bandwidth comparable to the other relevant frequencies
(chirp rate, nonlinearity response time). Is it possible to phase
lock the discrete level with the continuum modes? If indeed
this is possible, then what would be the phase to which the
discrete level locks? Does the discrete level lock with all the
continuum modes, or with just a fraction of the continuum? Is
there a threshold mechanism for the process?

In this paper, we study the dynamics of a discrete level
coupled to a continuum of modes. The discrete level is
nonlinear and its frequency is chirped. The continuum is
narrow enough to prevent Markovian dynamics and is also
nonlinear. Initially, the frequency of the discrete level is
strongly detuned from the peak of the continuum such that
it barely couples to it. As time evolves, the frequency of the
discrete level approaches the center of the continuum, and
thus it starts to decay into the continuum. Below a specific
threshold, we find that the decay is arrested, and the discrete
state remains excited while the system passes the continuum.
On the other hand, above that threshold, the process involves
simultaneous phase locking of the discrete state with the
entire continuum of modes, which consequently results in a
linear decay (rather than exponential) into the continuum, and
broadening the distribution of the continuum modes. In fact,
the distribution of the eventually populated continuum modes
has a width larger than the natural width of the continuum.
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II. NONLINEAR NON-MARKOVIAN COUPLED
MODE THEORY

We begin with the coupled equations describing the
dynamics of the discrete system coupled to the continuum
in the presence of the Kerr nonlinearity [11,14]:

∂tb = −i
∑

k

gkak − iχ1|b|2b − iαtb − iω0b, (1a)

∂tak = −igkb − iχ2

∑
k′

|ak′ |2ak − iωkak. (1b)

Here, ak(t) is the time-dependent amplitude of the kth mode
of the continuum with frequency ωk , and b(t) is the amplitude
of the discrete system with the resonance frequency ω0. χ1

and χ2 are the strengths of the Kerr nonlinearity of the discrete
state and of the continuum, respectively. For simplicity, we
assume that χ2 is independent of k; that is, the strength of the
nonlinearity is the same for all the continuum modes. The chirp
is achieved by adiabatically varying the resonance frequency of
the discrete system, with a rate α. Henceforth, we use positive
chirp α > 0, although the phenomena are generic and could
be observed not only with a linear chirp but also with other
types of potential variations. Also, gk is the coupling constant
between the discrete level and the kth mode, where we assume
that gk is a real function of k. For concreteness, we model the
continuum as a Lorentzian, centered at ω0 with a frequency
width of �, and coupling strength κ , that is,

g2
k = κ2 �

π [c(k − k0)2 + (�/2π )2]

c

L
. (2)

The dispersion relation relates the wave vector and the
frequency, ω = ck. c is the relevant velocity and k0 is the
wave vector corresponding to the central frequency ω0. L is
the length of a box containing the continuum modes (which
is taken to be infinite). Such a continuum describes, for
example, the coupling between an atom and the continuum of
electromagnetic vacuum modes in a lossy cavity. The atom in
such a cavity is coupled to a narrow band of electromagnetic
continuum modes, due to the presence of the cavity (in
contrast to a free atom that is coupled to a broadband
continuum). As a result, the spontaneous emission decay rate
in the cavity is smaller than the decay rate of a free atom (the
Purcell effect). The decay of the excited state of the atom
gives rise to population of the radiation vacuum modes at
the expense of the amplitude of the discrete state (the excited
state), exactly like the system described here.

First, to gain some intuition about the system, we study
the initial stages of evolution in the system. We assume that
initially only the discrete state is occupied, that is, b(t0) = 1
at t0 < 0. We also assume that the amplitude of b varies only
slightly with time, and that at early enough time, the population
of the continuum modes is negligible (ak(t) ≈ 0 for every k)

b(t) ≈ exp

[
− iα

(
t2 − t2

0

)
/2 − iω0(t − t0)

− iχ1

∫ t

t0

|b(t ′)2|dt ′
]
. (3)

Next, we define an effective nonlinearity strength
χ = χ1 + χ2 (henceforth we assume positive nonlinearity,
χ > 0). We also scale the amplitude of the kth mode as
Ak = ak exp[iα(t2 − t2

0 ) /2 + iωk(t − t0) + iχ1
∫ t

t0
|b(t ′)2|dt ′]

√
χ /α1/4 and the time as τ = √

αt . Finally, we introduce
the frequency mismatch 
k ≡ ω0 − ωk , the scaled frequency
mismatch 
̃k = 
k/

√
α, and the scaled bandwidth of

the continuum �̃ = �
√

α and use the conserved quantity,∑
k |ak|2 + |b|2 = 1 to get

i∂tAk + χ1√
α

Ak −
∑
k′

|Ak′ |2Ak + τAk = μke
−i
̃k (τ−τ0),

(4)

where we defined the parameter μk = gk
√

χα3/4. We will
ignore the second term [χ1Ak

√
α] since it only shifts the time

axis. Notice that in this general model, even if χ2 = 0 or if
χ1 = 0, Eq. (4) holds—as long as the effective nonlinearity
obeys χ > 0. That is, even if just part of the system is
nonlinear, the entire system will behave in a nonlinear fashion,
owing to the coupling between the subsystems. This means
that the source of the nonlinearity is unimportant for the
derivation of Eq. (4). When examining Eq. (4), one notices
that each mode crosses the linear resonance at a different
time, according to its specific detuning from the resonance
frequency ω0. Also, each mode has a different source term,
μk . Since all the modes are coupled, we will not study the
dynamics of each mode separately. Instead, we will look for
a superposition of the continuum modes that will effectively
depend on a reduced number of parameters. First, we find an
approximate solution for each mode when approaching the
linear resonance. Since this happens before the continuum
modes acquire any significant population, their evolution is
still in the linear regime, and the nonlinear term of Eq. (4) can
be neglected. By integrating Eq. (4) we get

Ak (τ ) = −iμk

∫ τ

τ0

exp

[
−i
̃k(τ ′ − τ0) + 1

2
i(τ 2 − τ ′2)

]
dτ ′

= −iμk

√
π

2i
exp

[
i

2

(

̃2

k + τ 2 + 2
̃kτ0
)]

×
{
�

[
ei π

4√
2

(
̃k + τ )

]
− �

[
ei π

4√
2

(
̃k + τ0)

]}

≈
τ0�τ<−
̃k

μk

τ
exp[−i
̃k (τ − τ0)] (5)

where �[x] is the error function. For autoresonant evolution,
the phase of the mode must approach a constant value while
approaching the linear resonance. Here, all the modes apart
from the central mode (
k = 0) have oscillating phases when
approaching the linear resonance. However, the approximate
solution in Eq. (5) implies that choosing a proper superposition
of continuum modes could yield a function experiencing
phase locking. We choose a superposition of the modes Ak ,
scaled such that it will coincide with the case of two coupled
discrete levels (for example, as in Ref. [7]), that is, a very
narrow continuum [� → 0 and g2

k = κ2δ(
k)]. The chosen
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superposition is

∑
k

gk

κ
Ak ≈

∑
k

gk

μk

κτ
e−i
̃k (τ−τ0) = μ

τ
e−�̃| τ−τ0|

= μ

τ
e−�̃(τ−τ0), (6)

where we define μ =
√

χκ

α3/4 . We can now define a memory
function K(t) = ∑

k g2
ke

i
kt , which, for the Lorentzian-shaped
continuum, yields an exponentially decaying function K(t) =
κ2e−�|t | [we remove the absolute value because τ � τ0].
Notice that for � → 0 our result converges to the simple case
of discrete coupled states, and Eq. (4) describes the evolution
of two coupled oscillators [15].

The expression described by Eq. (6) suggests an intriguing
situation where proximity of the linear resonance forces the
superposition of continuum modes to become a real function.
That is, even though the amplitude of each continuum mode
has a complex value, their superposition would nonetheless
always attain a real value. This suggests that perhaps a
collective autoresoance effect is taking place, where many
continuum modes phase lock with the discrete state and
are collectively being amplified by it. Without the collective
effect, one cannot expect autoresonant phase locking for all
the continuum modes, since for many of them the source
amplitude is too weak to maintain the phase locking. But for
those that do phase lock, we expect collective amplification.
To maintain the resonance throughout evolution, we expect
the nonlinearity to follow the chirp, that is,

∑
k |Ak|2 ≈ τ .

This means that, throughout evolution, more and more modes
will phase lock and condensate together to a state with a single
phase and growing amplitude. This result, as expressed by
Eq. (6), does not imply that the amplified modes experience
the phase locking stage and the amplification simultaneously,
since the continuum modes do not cross the linear resonance
exactly together. Actually, the resonance crossing and phase
locking for modes with positive detuning (
k > 0) precedes
the crossing of modes with negative detuning (
k < 0). We
expect this asymmetry to manifest itself in the final occupation
of the continuum modes, where the positively detuned modes
are expected to have higher occupation. Also, since the
coupling constant μk decays with the detuning, the modes
at the tails of the Lorentzian will not be efficiently amplified.
The most efficient amplification is a compromise between the
time spent by the mode in resonant phase locking and the
strength of the coupling constant. Modes closer to the center
of the Lorentzian are coupled stronger to the source. On the
other hand, such “central modes” cross the resonance later,
thus spend less time being phase locked to the source, and
therefore have less time to be amplified significantly. These
arguments imply that we should expect a shift of the continuum
peak towards the positively detuned frequencies. The width of
the Lorentzain also plays a major role in the occupation of the
modes of the continuum. A wider continuum (increased �) has
a higher coupling constant at the tails, and can support efficient
amplification of farther detuned modes. As such, efficient
amplification will occur for a wider stripe of continuum modes;
thus we expect the final distribution of continuum modes to be
broader than the initial distribution.

The resonance-crossing stage is characterized by two
parameters, which determine the evolution of the system. To
see this, we multiply Eq. (4) by gk , sum over all modes,
and again neglect the weak nonlinearity of the early stage
prior to resonance crossing. Defining Y = ∑

k
gk

κ
Ake

�̃(τ−τ0)

transforms Eq. (4) into

i∂tY −
∑
k′

|Ak′ |2Y + τY − i�̃Y = μ. (7)

Therefore, the capture into resonance is mainly controlled
by two parameters,μ, which is the equivalent of the threshold
parameter when coupling a driving oscillator to a single driven
oscillator, and �̃ that plays the role of damping. However,
varying the other parameters (the chirp α and the nonlinearity
χ ), changes the details of the exact dynamics, and as such
they can yield modifications to the evolution of each mode
separately. We note that autoresonance between a driver and
a single nonlinear driven oscillator was studied recently in
the presence of damping and fluctuations [16]. However, here
the source of damping and fluctuations are the continuum
modes, which are in fact coupled driven systems. That is,
for our case of coupling to a continuum of modes, one cannot
separate the damping from the autoresonant evolution: without
the coupling to the continuum there is no damping, but at the
same time there is also no autoresonant evolution.

III. NUMERICAL RESULTS FOR THE SYSTEM

Up to this point, the system was treated analytically,
under approximations. It is however important to simulate
the actual dynamics of the system numerically. To do that
we manipulate Eqs. (1a) and (1b). We define the am-
plitudes b̃ ≡ b exp[iω0t + iχ2

∫ t

t0

∑
k′ |ãk′(τ )|2dτ ] and ãk ≡

ak exp[iωkt + iχ2
∫ t

t0

∑
k′ |ãk′(τ )|2dτ ], and we get two coupled

equations describing the evolution of the continuum modes and
of the discrete system:

∂t b̃ = iχ2b̃ − iχ |b̃|2b̃ − iα tb̃ − i
∑

k

gkãke
i
kt , (8a)

∂t ãk = −igkb̃e−i
kt , (8b)

where we replaced
∑

k′ |ãk′ |2 by 1 − |b̃|2. From now on, we
neglect the term iχ2b̃ on the right-hand side (RHS) of Eq. (8a),
since it only shifts the time TR = −χ/α at which the system
crosses the (linear) resonance with the center of the continuum
by the delay 
TR ≈ χ2/α.

(1)

b

tα
0ω

Γ
2

bχ  

kg

kΔ  

FIG. 1. Schematics of a discrete level b̃ coupled to a Lorentzian
continuum. The natural frequency of the discrete level, ω0, is shifted
by a linear chirp and nonlinearity.
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Equation (8a) describes the evolution of a driven non-
linear oscillator, where the driver resonance frequency is
adiabatically varied. The terms χ |b̃|2b̃ and iα tb̃ describe the
nonlinearity of the driven oscillator and the chirped frequency
of the driver. A diagrammatic representation of the system
is shown in Fig. 1. The last term on the RHS of Eq. (8a),∑

k gkãke
i
kt , is the sum of the of the continuum modes with

appropriate amplitudes and phases. The continuum modes
have amplitudes and phases which are both time dependent,
and the dynamics of each mode is governed by Eq. (8b).
This term acts as the driving source for the oscillations of
the amplitude and phase of the driven oscillator, b̃. In analogy
with autoresonance dynamics, we expect that, if possible, the
phase b̃ will lock with the phase of the source term. (This
prediction is exactly the same as the one made above, when
we examined the system from the continuum point of view, and
concluded that

∑
k

gk

κ
Ak should phase lock with the discrete

state). However, unlike the case of a driven nonlinear oscillator
coupled to a single oscillator, here the source is a continuous set
of oscillators, each with its own frequency and time-dependent
amplitude. Also, each continuum mode is effectively coupled
to all the other modes through their coupling with b̃, which
introduces feedback into the dynamics.

We will now transform Eqs. (8a) and (8b) to a single
integro-differential equation to eliminate the continuum. By
integrating Eq. (8b) from the beginning of the process at t0,
we get the kth amplitude at the time t :

ãk(t) = −igk

∫ t

t0

b̃(t ′)e−i
kt
′
dt ′ + ãk(t0). (9)

Substituting Eq. (9) into Eq. (8a), we find that b̃ evolves
according to

∂t b̃ = −
∫ t

t0

K(t − t ′)b̃(t ′)dt ′ − iχ |b̃|2b̃ − iα tb̃ − if (t),

(10)

where we defined the memory function

K(t − t ′) =
∑

k

g2
ke

i
k (t−t ′), (11a)

and a fluctuations term (Langevin force)

f (t) =
∑

k

gkãk(t0)ei
kt , (11b)

which depends on the amplitude of the continuum modes at t0.
For the Lorentzian-shaped continuum, the memory function
decays exponentially, K(t − t ′) = κ2e−�| t−t ′|. From now on,
we will assume that the continuum is initially empty, that is, the
initial amplitudes of the continuum modes are all zero [ak(t0) =
0, ∀k], which means that the fluctuations term vanishes.

Next, we separate b̃(t) into amplitude and phase by
defining b̃(t) ≡ x(t)eiθ(t), and separating Eq. (10) into real
and imaginary parts:

∂tx = −
∫ t

t0

x(t ′)Re
{
K(t − t ′)ei[θ(t ′)−θ(t)]

}
dt ′, (12a)

∂tθ = − 1

x

∫ t

t0

x(t ′)Im
{
K(t − t ′)ei[θ(t ′)−θ(t)]

}
dt ′ − χx2 − α t.

(12b)

Equations (12a) and (12b) are similar to the equation
describing the dynamics of a single driven oscillator with
damping. However, here the driving force comes from the
occupied modes in the continuum, while at the same time the
occupied modes are responsible for the damping of the driven
oscillator. We are interested in a continuum which is narrow
enough so that the Markovian approximation is inapplicable,
and the dynamics, in general, has memory. We begin by solving
numerically the evolution of x and θ for parameters above the
autoresonance threshold. Figure 2(a) shows an example of
efficient amplification of the continuum modes. The red line
shows the decay of x2 = |b̃|2 (population of the discrete state),
the black-dashed line displays the amplification of

∑
k |ãk|2,

and the blue circles represent the analytic result −α t/χ .
Indeed, the simulation shows that the continuum modes are
amplified at the expense of the discrete mode, which in turn
decays linearly in time (as we have found analytically). We also
plot the dynamics of |∑k gkãke

i
kt |2 (green dotted dashed).
As expected, this superposition grows in time, since all the
amplified modes comprising it are phase locked; hence they
always interfere constructively. The blue line in the center
of Fig. 2(b) displays the simulated evolution of the phase
mismatch between

∑
k gkãke

i
kt and b̃(t). As expected, this
superposition phase locks with the discrete mode. Also, we
plot the phase mismatch between ãk(t)ei
kt and b̃(t) for five
different values of 
k/�. As shown, the strongly detuned
modes (for both positive and negative detuning, 
k/� = ±25)
do not phase lock [17]. On the other hand, the modes at
the vicinity of the center of the continuum do phase lock
and are amplified [exactly as was predicted by Eq. (5)]. For
comparison, we plot the dynamics of x2 and of the phase
mismatch below the autoresonance threshold [Figs. 2(c) and
2(d), respectively], where we only change κ to 0.005. Now, the
discrete level remains populated and the phases do not lock.
Notice that for these parameters the system is very different
from the simpler problem of two coupled oscillators. Namely,
describing the system as two coupled oscillators requires that
the memory time of the system, 1/�, will be much longer
than the typical time scale for variations in b̃. However, for
autoresonant dynamics such typical time scale is χ/α , which
is comparable to the memory time. For the same reason, the
dynamics below the autoresonant threshold is not Markovian.
This is because for Markovian evolution, the memory time
must be much shorter than the typical variation time of b̃,
whereas here the memory function resembles a delta function
in time, K(t − t ′) = κ2

�
δ(t − t ′), transforming Eq. (10a) into

∂tx = −κ2

�
x(t) (13)
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FIG. 2. (Color online) (a) Autoresonant dynamics for α = 0.0015, χ = 0.5, κ = 0.035, and � = 0.005. The red-solid line represents
|b̃|2 = x2, the black-dashed line represents

∑
k |ãk|2, the blue circles mark the analytic result for autoresonant phase locking (|b̃|2 = −αt/χ ),

and the green-dashed-dotted line shows the evolution of |∑k gkãke
i
kt |2 (normalized to unity). Clearly, the discrete level decays linearly (in

time) into the continuum. The vertical black-dashed line marks the crossing of the linear resonance. (b) Evolution of the phase mismatch
between b̃ and

∑
k gkãke

i
kt (central blue line), and of between b̃ and different continuum modes (other lines), both positively and negatively
detuned (for clarity, the plots are slightly shifted from one another). Dynamics (c) of |b̃|2 and (d) of the phase mismatch between b̃ and∑

k gkãke
i
kt , below the threshold for α = 0.0015, χ = 0.5, κ = 0.005, and � = 0.005. (e) Markovian exponential decay (|b̃|2, solid-red line)

and amplification of a broadband continuum (
∑

k |ãk|2, dashed-black line) under α = 0.0015, χ = 0.5, κ = 0.07, and � = 1.

for which the solution is an exponential decay of x. Here,
unlike the autoresonant evolution, the system decays expo-
nentially before crossing the linear resonance. In this regime,
there is no nonlinear phase locking with the continuum, and
no fixed phase relation between the various continuum modes.
Figure 2(e) shows the exponential decay and amplification
of x2 and

∑
k |ãk|2, respectively (red and black, respectively)

for α = 0.0015, χ = 0.5, κ = 0.07, and � = 1. Henceforth
throughout the rest of the paper, we will use parameters that
we are far from the exponential decay regime, so that we can
indeed observe non-Markovian autoresonant decay.

IV. AUTORESONANT THESHOLD

We now turn to study the threshold for autoresonant decay.
Figure 3 displays the final population of the discrete level, x2

f ,
as a function of μ for α = 0.0015, χ = 0.5. The black-dashed-

FIG. 3. (Color online) Final occupation of the discrete level, x2
f ,

vs μ for α = 0.0015, χ = 0.5, and � = 0.0001 (black dashed dotted),
0.002 (blue solid), 0.005 (red dashed), and 0.01 (green dotted).

dotted, blue-solid, red-dashed, and green-dotted lines represent
� = 0.0001,0.002,0.005,0.01, respectively. For � = 0.0001,
the continuum is narrow enough to be considered a discrete
level. The damping for the narrow band is negligible, and the
dynamics is identical to that of the two coupled oscillators
system, where indeed the threshold for the transition to
autoresonant decay is sharp, occurring for μ ≈ 0.4. When
the width of the continuum is increased, the transition to
autoresonant decay is not sharp anymore. Basically, increasing
the continuum width makes the discrete state couple to more
continuum modes. The phase oscillations of these modes
makes it harder for them to phase lock, and stronger coupling
(larger μ) is required for complete population inversion.

V. EMISSION SPECTRUM ANALYSIS

It is interesting to study the properties of the occupied
continuum modes, as revealed by the simulation. We find that
indeed the width of the emitted spectrum increases when the
coupling constant and/or � are increased. To show that, we first
calculate the evolution of the continuum modes by integrating
Eq. (8b):

ãk(t) = −igk

∫ t

t0

b̃(t ′)e−i
kt
′
dt ′. (14)

We define the final distribution of the continuum modes as
ã

f

k , and evaluate the continuum width by calculating



f

k =
(∫ �

−�

∣∣af

k

∣∣2

2

kd
k

)1/2/(∫ �

−�

∣∣af

k

∣∣2
d
k

)1/2

, (15)
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FIG. 4. (Color online) (a)Width of the distribution of the contin-
uum modes, 
f

k , vs μ, for α = 0.0015, χ = 0.5, and � = 0.002 (blue
solid), 0.005 (red dashed), and 0.01 (green dotted). The circles mark
the analytic model. (b) Final distribution of the continuum modes,
|ãf

k |2, vs 
k/�. The blue (black) line represents the final distribution
of the continuum modes below (above) the threshold for κ = 0.01
(κ = 0.08) and for α = 0.0015, χ = 0.5, and � = 0.005. The red
line mark the natural shape of the coupling to the continuum. The
green-dashed-dotted line marks the semianalytical calculation of the
final distribution.

where � 	 � is a cutoff frequency for the integral. We plot
in Fig. 4(a) the width normalized to � vs μ for α = 0.0015,
χ = 0.5. μ is varied by varying κ . The blue, red, and green
lines represent � = 0.002,0.005,0.01, respectively. We study
the dynamics of the continuum as a function of κ and �.
First, we see that increasing κ indeed increases the width
of the distribution of populated modes in the continuum.
Notice that the width goes beyond the width associated with
weak coupling (below the autoresonance threshold). Also,
there is a clear autoresonant transition: below the threshold
the “continuum width” barely changes while increasing the
coupling, whereas above the threshold the width grows
monotonically with increasing coupling strength. We also
find, as expected, that the continuum width increases when
increasing �. This is not seen in Fig. 4(a), since the width
plotted there is normalized to �. Figure 4(b) shows the final
distribution of the continuum modes below and above the
threshold (blue and black lines, respectively) for κ = 0.01
(κ = 0.08) and α = 0.0015, χ = 0.5, and � = 0.005. As

expected, the profile changes drastically. Below threshold,
the continuum distribution is nearly symmetric and has a
shape very close to the line shape of the original continuum
(af

k ∝ gk), marked here with red line. Above the threshold, the
distribution is shifted to the positive detuned frequencies, and
has a wider width. We emphasize that the exact dynamics
also depends on α and χ . That is, the width grows at a
different rate as a function of μ, for different chirp rates or
nonlinearities. However, the main results do not change. There
is always a clear transition to autoresonant dynamics, where
the width of the spectrum of the continuum modes always
increases.

To obtain an approximate analytic expression for the
final occupation of the continuum modes, one first needs to
understand the dynamics of the system. The dynamics of
each continuum mode is dictated by Eq. (14). We expect
that the most amplified modes are those that compromise
between phase matching with b̃ for the longest time and
having a strong coupling to the continuum (as mentioned
above, this compromise yields positive detuning in the final
modal occupation). However, the major problem here is that,
unlike the autoresonant coupling process between a single
driven mode and a driver with a known, externally controlled
phase, for coupling to a continuum of modes the phase of
b̃ is dynamically changing, according to the evolution of the
system, and it is basically unknown. What renders things even
harder is the memory of the system, which makes the phase
at any given time depend on its past values. We overcome
these problems by making some reasonable assumptions that
yield a semianalytic solution for the continuum width. First,
we assume that below the resonance time (TR = −χ/α) the
amplitude b̃ does not decrease, but only its phase oscillates.
This is of course inaccurate, since the coupling to the
continuum, represented by the expression i

∑
k gkãke

i
kt in
Eq. (8a) has both real and imaginary parts. The imaginary
part represents a dynamic level shift of the discrete level,
resulting from the coupling to the continuum, while the real
part represents dynamic tunneling to the continuum, which
results in the decay of b̃. Our assumption becomes more
accurate for narrower continua and weaker coupling constants,
where the tunneling is negligible as long as the discrete
level is slightly detuned from the continuum peak. The most
significant oscillations in this regime arise from the chirp
and the nonlinearity, θ (0) = −α

2 t2 − χt . The correction to the
phase oscillations in this regime comes from the dynamic level
shift which, to first order in κ2 (the small parameter in the
problem as long as κ2 is small enough), can be approximated
using Eq. (12b) as

∂tθ
(1) = −

∫ t

−∞
Im

(
K(t − t ′) exp

{
i
[α

2
(t ′2 − t2) + χ (t ′ − t)

]})
dt ′

= i exp

[
i

2α
(αt + χ + i�)2

] √
π

2α

{√
2iα + eiπ/4

√
α

2
�

(
eiπ/4 [αt + χ + i�]√

2α

)}
, t < TR. (16)
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Here, we assumed that the initial time of the process
is t → −∞, but the results do not change significantly
for a finite initial time. Next, we assume that above TR ,
phase locking takes place and the amplitude decreases as
b̃ = √−αt/χeiθ (1)(t). Here θ (1)(t) is an unknown phase, of
order κ2, which we would like to estimate since, as mentioned
above, it dictates what modes are amplified. The dynamics of
the phase in this regime is determined by Eq. (12b) with phase
locking:

∂tθ
(1) = − 1

x

∫ t

t0

x(t ′)Im
{
K(t − t ′)ei[θ(t ′)−θ(t)]

}
dt ′, t � TR.

(17)

Notice that at the vicinity of t = 0 the integral approxi-
mately vanishes, since x(t → 0) decays to zero. This means
that at t = 0 the discrete level is resonant with the mode

k = 0, while below t = 0 it is resonant with positively
detuned modes. We find numerically that ∂tθ

(1) indeed goes
to zero for t → 0, with a moderate slope. We also find that
it can be satisfactory fitted with a Taylor series expanded
up to a third order. We therefore do not explicitly calculate
the integral in (17). Instead, we fit it with a Taylor series
around t = 0, and by assuming continuity of the phase and
its derivatives at TR , we find the coefficients of the series up
to the third order. In doing that, we use the Taylor expansion
of the RHS of Eq. (16) to find the evolution of the phase
θ (1) for t � TR , and by integrating numerically b̃ from TR to
t = 0 we get our approximate solution. The circles in Fig. 4(a)
show the calculated widths for the appropriate parameters. We
find good agreement between the approximate analytic model
and the numerical results. As mentioned above, for higher
continuum widths or higher coupling constants the numerical
results deviate from the analytic model. Nonetheless, the
model does capture the main results of the simulations. Finally,
the green line in Fig. 4(b) shows the calculated distribution of
continuum modes for the same parameters as those of the
black line. As shown there, the calculated profiles are very
similar. A more accurate model should take into consideration
the exact transition to autoresonant dynamics (which is not
as sharp as our analytic model suggests), the decay to the
continuum before the nonlinear capture into resonance (which
influences the amplitude and phase of the discrete state before
the phase locking regime), and the exact dynamics during the
autoresonant evolution.

VI. CONCLUSION

To summarize, we have shown that a discrete level can be
captured into a continuous resonance with a continuum set
of modes. We have found that the final distribution of the
continuum modes can be increased compared to the natural
width of the continuum. Also, at the end of the process
(t ∼ 0), all the phases are locked. The combination of phase
coherence between the different modes and a broad spectrum
can lead to emission of short pulses, for example, an atom
emitting a transform-limited photon with narrow temporal
width. These ideas can be extended to the quantum regime,
where the problem presented here is equivalent to an atom,
modeled as a quantum oscillator initially in a coherent state,
coupled to a narrow Lorentzian-shaped continuum of coherent
states. However, if the atom is not in a coherent state, or if the
atom is not modeled as an oscillator, quantum fluctuations
may have an effect on the decay process. Also, different
types of continua will yield different memory functions and
therefore different results. For example, emission next to a
band edge of a photonic crystal will surely behave differently,
due to the strong non-Markovian dynamics, and effects, like
superradiance at the vicinity of the band edge, would change
due to the predetermined autoresonant evolution [18]. For
example, it will be interesting to design autoresonant decay that
will yield stronger superradiant intensities. Finally, it will be
very interesting to study how fluctuations in the continuum will
affect the dynamics, for example, by assuming that initially
ãk(t0) = 0, and that the modes are distributed in a coherent
fashion, or incoherently (e.g., thermal distribution). In such a
case, the fluctuations term f (t) is not zero, which introduces
fluctuations to the system. Is it still possible to phase lock
with the continuum modes? Will autoresonance overcome
random fluctuations of the continuum? Would the reverse
process be possible? That is, can we begin with the discrete
level empty, and use autoresonance to phase lock it to the
fluctuating continuum, such that eventually the discrete level
will amplify? These and related questions offer much thought
for future work.
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